Как найти сумму ряда? Вычисление суммы ряда онлайн Суммирование бесконечных рядов

Как найти сумму ряда? Вычисление суммы ряда онлайн Суммирование бесконечных рядов

Задача суммирования множества слагаемых решается в теории рядов.

где u 1, u 2, u 3 …., u n …–члены бесконечной числовой последовательности, называется числовым рядом .

Числа u 1, u 2, u 3 …., u n … называют членами ряда , а u n – общий член ряда.

Сумма конечного числа n первых членов ряда называется n–й частичной суммой ряда.

S n = u 1 + u 2 +… + u n ,

т.е. S 1 = u 1 ; S 2 = u 1 + u 2

S n = u 1 + u 2 +…+ u n

Ряд называется сходящимся, если существует конечный предел частичной суммы S n при n , то есть

Число S называется суммой ряда.

В противном случае:

Тогда ряд называется расходящимся.

Эталонные ряды.

1. Геометрический ряд (геометрическая прогрессия)

Пример.

2. Гармонический ряд.

3. Обобщенный гармонический ряд.

Пример.

.

Признаки сходимости знакоположительных рядов

Теорема 1. Необходимый признак сходимости.

C помощью этого признака можно установить расходимость ряда.

Пример.

Достаточные признаки

Теорема 1.Признак сравнения рядов.

Пусть даны два знакоположительных ряда:

Причем тогда, если ряд (2) сходится, то сходится и ряд (1).

Если ряд (1) расходится, то расходится и ряд (2).

Пример. Исследовать ряд на сходимость:

Сравним этот ряд с геометрическим рядом:

Следовательно, по признаку сравнения искомый ряд сходится.

Теорема 2. Признак Даламбера.

Пример. Исследовать на сходимость ряд:

по признаку Даламберу ряд сходится.

Теорема 3.Радикальный признак Коши.

3) при вопрос о сходимости остается открытым.

Пример: исследовать на сходимость числовой ряд:

Решение:

Следовательно, ряд сходится по Коши.

Теорема 4. Интегральный признак Коши.

Пусть члены ряда

положительны и не возрастают, то есть и являются значениями непрерывной невозрастающей функцииf (x ) при x = 1, 2, …, n .

Тогда для сходимости ряда необходимо и достаточно, чтобы сходился несобственный интеграл:

Пример.

Решение:

Следовательно, ряд расходится, так как расходится несобственный интеграл.

Знакопеременные ряды. Понятие абсолютной и условной сходимости знакопеременого ряда.

Ряд называется знакопеременным , если любой его член может быть, как положительным, так и отрицательным.

Рассмотрим знакочередующиеся ряды:

Теорема 1. Признак Лейбница (достаточный признак).

Если у знакочередующегося ряда

члены убывают по абсолютной величине, то есть и

то ряд сходится, и его сумма не превосходит первого члена, то есть S .

Пример.

Решение:

Применим признак Лейбница:

.

Следовательно, ряд сходится по Лейбницу.

Теорема 2. Достаточный признак сходимости знакопеременного ряда.

Если для знакопеременного ряда сходится ряд, составленный из абсолютных величин его членов , то данный знакопеременный ряд сходится.

Пример: исследовать ряд на сходимость:

Решение:

из абсолютных величин членов исходного ряда сходится, как обобщенный гармонический ряд при .

Следовательно, исходный ряд сходится.

Этот признак является достаточным, но не необходимым, то есть существуют знакопеременные ряды, которые сходятся, хотя ряды, составленные из абсолютных величин, расходятся.

Определение 1. абсолютно сходящимся, если сходится ряд, составленный из абсолютных величин его членов.

Определение 2. Знакопеременный ряд называется условно сходящимся, если сам ряд сходится, а ряд, составленный из абсолютных величин его членов, расходится.

Отличие между ними в том, что абсолютно сходящийся ряд сходится из-за того, что его члены быстро убывают, а условно сходящийся ряд сходится из-за того, что положительные и отрицательные члены уничтожают друг друга.

Пример.

Решение:

Применим признак Лейбница:

Следовательно, ряд сходится по Лейбницу. Но ряд составленный из абсолютных величин его членов расходится, как гармонический.

Значит, исходный ряд сходится условно.

Основные понятия и определения

Пусть задана бесконечная числовая последовательность :

, … (1.1)

В прошлом году мы определяли числовую последовательность как функцию натурального аргумента. Это означает, что каждый член последовательности является функцией своего номера п : . В дальнейшем иногда будем рассматривать и п , равное нулю, поэтому числовую последовательность будем определять как функцию целочисленного аргумента (от слов «целое число»).

Определение 1. Выражение

(1.2)

называется бесконечным числовым рядом , или, короче, рядом . Члены последовательности ,… называются членами ряда ; выражение с индексом п - общим членом ряда .

Отличить последовательность от ряда просто: члены последовательности пишутся через запятую, члены ряда соединены знаками плюс.

Таким образом, понятие ряда является обобщением суммирования на случай бесконечного числа слагаемых.

Ряд считается заданным, если известна (задана) формула его общего члена. Общий член ряда (1.2) совпадает с общим членом последовательности (1.1) и также является функцией целочисленного аргумента n , т.е. . Например, если задан общий член в виде

, (1.3)

то, полагая в этой формуле n = 1, 2, 3,..., можно найти любой член ряда, а тем самым и весь ряд:

- члены последовательности или члены ряда,

(1.4)

Числовой ряд.

Определение. Сумма n первых членов ряда называется n- ой частичной суммой ряда и обозначается символом :

Можно записать так: .

В частности,

Составим из всех частичных сумм ряда (1.2) числовую последовательность :

(1.7)

Она называется последовательностью частичных сумм. Как всякая числовая последовательность, она может иметь предел, т.е. сходиться, или не иметь предела, т.е. расходиться. Предел последовательности частичных сумм, если он существует, будем обозначать буквой S .

Определение. Ряд называется сходящимся (ряд сходится ), если сходится последовательность частичных сумм этого ряда. При этом предел S последовательности частичных сумм называется суммой данного ряда , т.е.



. (1.8)

Для сходящегося ряда, имеющего сумму S, можно формально записать равенство:

Ряд, не имеющий суммы (1.8), называют расходящимся . В частности, если , то говорят, что ряд расходится к , и в этом случае используют символическое равенство

.

Замечание. Из равенства (1.6) следует, что любой член ряда можно представить как разность частичных сумм и :

. (1.10)

Изобразим геометрически последовательность частичных сумм. На рис.1.1,а и б ряд сходится, на рис.1.1,в - расходится.


а)

б)

Рис.1.1

Замечание 3. Иногда номер члена ряда начинается с нуля: .

Примеры числовых рядов. Вычисление суммы ряда

Пример 1 º.

1 + 1 + 1 + . . . + 1 + . . .

Здесь , .

Данный ряд расходится Þ 1 + 1 + 1 + . . . + 1 + . . .=+¥.

Пример 2 º.

Как обычно, чередование знаков + и - задается с помощью степени (-1). Здесь последовательность частичных сумм имеет вид:

т.е. значение частичной суммы зависит от чётности номера п :

Таким образом, чётные и нечётные частичные суммы стремятся к двум различным пределам:

чётные к нулю, нечётные - к единице:

Рис.1.2

Следовательно, последовательность не имеет предела, и данный ряд расходится.

Пример 3 º.

1 + 2 + 3 + ... + n + ...

Это арифметическая прогрессия с разностью . Напомним, что название «арифметическая» происходит оттого, что каждый член этой прогрессии, начиная со второго, равен среднему арифметическому соседних с ним членов:

.

В данной прогрессии , а последовательность частичных сумм имеет вид:

Пример 6º.

.

Вывод будет дан ниже. Здесь в знаменателе только нечётные числа.

Пример 7º.


. Вывод будет дан ниже.

Пример 8º.

Вывод будет дан ниже. Сумма ряда равна числу е - основанию натурального логарифма.

Сумму ряда вычислить не всегда легко и даже не всегда возможно. Поэтому в теории рядов чаще решается более простая задача - выяснение, сходится ряд или расходится. Это называется исследованием сходимости ряда.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение

высшего профессионального образования

«МАТИ»  РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. К.Э. ЦИОЛКОВСКОГО

Кафедра «Моделирование систем и информационные технологии»

Числовые ряды

Методические указания к практическим занятиям

по дисциплине «Высшая математика»

Составители : Егорова Ю.Б.

Мамонов И.М.

Корниенко Л.И.

Москва 2005 введение

Методические указания предназначены для студентов дневного и вечернего отделения факультета № 14 специальностей 071000, 130200, 220200.

1. Основные понятия

Пусть u 1 , u 2 , u 3 , …, u n , …  бесконечная числовая последовательность. Выражение
называетсябесконечным числовым рядом , числа u 1 , u 2 , u 3 , …, u n  членами ряда;
называется общим членом ряда. Ряд часто записывают в сокращенном (свернутом) виде:

Сумму первых n членов числового ряда обозначают через и называютn -й частичной суммой ряда :

Ряд называется сходящимся , если его n -я частичная сумма при неограниченном возрастанииn стремится к конечному пределу, т.е. если
Числоназываютсуммой ряда .

Если же n -я частичная сумма ряда при
не стремится к конечному пределу, то ряд называютрасходящимся .

Пример 1. Найти сумму ряда
.

Решение. Имеем
. Так как:

,

Следовательно,

Так как
, то ряд сходится и его сумма равна
.

2. Основные теоремы о числовых рядах

Теорема 1. Если сходится ряд
то сходится и рядполучаемый из данного ряда отбрасыванием первых
членов (этот последний ряд называют
-м остатком исходного ряда). И наоборот, из сходимости
-го остатка ряда вытекает сходимость данного ряда.

Теорема 2. Если сходится ряд
и суммой его является число, то сходится и ряд
причем сумма последнего ряда равна
.

Теорема 3. Если сходятся ряды

имеющие соответственно суммыS и Q, то сходится и ряд причем сумма последнего ряда равна
.

Теорема 4 (Необходимый признак сходимости ряда) . Если ряд
сходится, то
, т.е. при
предел общего члена сходящегося ряда равен нулю.

Следствие 1. Если
, то ряд расходится.

Следствие 2. Если
, то определить сходимость или расходимость ряда с помощью необходимого признака сходимости нельзя. Ряд может как сходящимся, так и расходящимся.

Пример 2. Исследовать сходимость ряда:

Решение. Находим общий член ряда
. Так как:

т.е.
, то ряд расходится (не выполняется необходимое условие сходимости).

3. Признаки сходимости рядов с положительными членами

3.1. Признаки сравнения

Признаки сравнения основаны на сравнении сходимости заданного ряда с рядом, сходимость или расходимость которого известна. Для сравнения используются ниже перечисленные ряды.

Ряд
составленный из членов любой убывающей геометрической прогрессии, является сходящимся и имеет сумму

Ряд
составленный из членов возрастающей геометрической прогрессии, является расходящимся.

Ряд
является расходящимся.

Ряд
называется рядом Дирихле. При>1 ряд Дирихле сходится, при <1- расходится.

При =1 ряд
называется гармоническим. Гармонический ряд расходится.

Теорема. Первый признак сравнения. Пусть даны два ряда с положительными членами:

(2)

причем каждый член ряда (1) не превосходит соответствующего члена ряда (2), т.е.
(n = 1, 2, 3, …). Тогда если сходится ряд (2), то сходится и ряд (1); если расходится ряд (1), то расходится и ряд (2).

Замечание. Этот признак остается в силе, если неравенствo
выполняется не при всех, а лишь начиная с некоторого номераn = N , т.е. для всех n N .

Пример 3. Исследовать сходимость ряда

Решение. Члены данного ряда меньше соответствующих членов ряда
составленного из членов бесконечно убывающей геометрической прогрессии. Так как этот ряд сходится, то сходится и заданный ряд.

Теорема. Второй признак сравнения (предельная форма признака сравнения). Если существует конечный и отличный от нуля предел
, то оба рядаиодновременно сходятся или расходятся.

Пример 4. Исследовать сходимость ряда

Решение. Сравним ряд с гармоническим рядом
Найдем предел отношения общих членов рядов:

Так как гармонический ряд расходится, то расходится и заданный ряд.

Сумма ряда

сайт позволяет найти сумму ряда онлайн числовой последовательности. Помимо нахождения суммы ряда онлайн числовой последовательности, сервер в режиме онлайн найдет частичную сумму ряда . Это полезно для аналитических выкладок, когда сумму ряда онлайн необходимо представить и найти как решение предела последовательности частичных сумм ряда . По сравнению с другими сайтами, сайт обладает неоспоримым преимуществом, так как позволяет найти сумму ряда онлайн не только числового, но и функционального ряда , что позволит определить область сходимости исходного ряда , применяя наиболее известные методы. Согласно теории рядов , необходимым условием сходимости числовой последовательности является равенство нулю предела от общего члена числового ряда при стремлении переменной к бесконечности. Однако, это условие не является достаточным для определения сходимости числового ряда онлайн .. Для определения сходимости рядов онлайн найдены разнообразные достаточные признаки сходимости или расходимости ряда . Наиболее известные и часто применяемые из них - это признаки Д"Аламбера, Коши, Раабе, сравнения числовых рядов , а также интегральный признак сходимости числового ряда . Особое место среди числовых рядов занимают такие, в которых знаки слагаемых строго чередуются, а абсолютные величины числовых рядов монотонно убывают. Оказывается, для таких числовых рядов необходимый признак сходимости ряда онлайн является одновременно и достаточным, то есть равенство нулю предела от общего члена числового ряда при стремлении переменной к бесконечности. Существует множество различных сайтов, на которых представлены серверы для вычисления суммы ряда онлайн , а также разложения функций вряд в режиме онлайн в некоторой точке из области определения этой функции. Если разложить функцию в ряд онлайн не представляет на этих серверах особого труда, то вычислить сумму функционального ряда онлайн , каждым членом которого, в отличие от числового ряда , является не число, а функция, представляется практически невозможным в силу отсутствия необходимых технических ресурсов. Для www.сайт такой проблемы не существует.

И т.д. – достаточно самых минимальных знаний о числовых рядах . Необходимо понимать, что такое ряд , уметь расписывать его подробно и не округлять глаза после словосочетаний «ряд сходится», «ряд расходится», «сумма ряда». Поэтому, если ваше настроение совсем на нуле, пожалуйста, уделите 5-10 минут статье Ряды для чайников (буквально первые 2-3 страницы), а потом возвращайтесь сюда и смело начинайте решать примеры!

Следует отметить, что в большинстве случаев найти сумму ряда непросто, и этот вопрос обычно решается через функциональные ряды (доживём-доживём:)) . Так, например, сумма популярного артиста выводится через ряды Фурье . В этой связи на практике почти всегда требуется установить сам факт сходимости , но не найти конкретное число (многие, думаю, уже успели это заметить). Однако среди великого множества числовых рядов есть немногочисленные представители, которые позволяют без особых проблем прикоснуться к святая святых даже полному чайнику. И на вводном уроке я приводил пример бесконечно убывающей геометрической прогрессии , сумма которой легко рассчитывается по известной школьной формуле.

В данной статье мы продолжим рассматривать похожие примеры, кроме того, узнаем строгое определение суммы и попутно познакомимся с некоторыми свойствами рядов. Разомнёмся… да прямо на прогрессиях и разомнёмся:

Пример 1

Найти сумму ряда

Решение : представим наш ряд в виде суммы двух рядов:

Почему в данном случае так можно сделать? Выполненные действия основаны на двух простейших утверждениях:

1) Если сходятся ряды , то будут сходиться и ряды, составленные из сумм или разностей соответствующих членов: . При этом существенно то обстоятельство, что речь идёт о сходящихся рядах. В нашём примере мы заранее знаем , что обе геометрические прогрессии сойдутся, а значит, без всяких сомнений раскладываем исходный ряд в два ряда.

2) Второе свойство ещё очевиднее. Константу можно вынести за пределы ряда: , и это не повлияет на его сходимость или расходимость и итоговую сумму. Зачем выносить константу? Да просто чтобы она «не мешалась под ногами». Но иногда бывает выгодно этого и не делать

Чистовое оформление примера выглядит примерно так:

Дважды используем формулу для нахождения суммы бесконечно убывающей геометрической прогрессии: , где – первый член прогрессии, – основание прогрессии.

Ответ : сумма ряда

Начало решения можно оформить несколько в другом стиле – расписать ряд напрямую и перегруппировать его члены:

Дальше по накатанной.

Пример 2

Найти сумму ряда

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Каких-либо особых изысков здесь нет, но однажды мне попался необычный ряд , который может застать врасплох неискушенного человека. Это… тоже бесконечно убывающая геометрическая прогрессия! Действительно, , и сумма рассчитывается буквально за пару мгновений: .

А сейчас живительный глоток математического анализа, необходимый для решения дальнейших задач:

Что такое сумма ряда?

Строгое определение сходимости/расходимости и суммы ряда в теории даётся через так называемые частичные суммы ряда. Частичные – значит неполные. Распишем частичные суммы числового ряда :

И особую роль играет частичная сумма «эн» членов ряда:

Если предел частичных сумм числового ряда равен конечному числу: , то такой ряд называют сходящимся , а само число – суммой ряда . Если же предел бесконечен либо его не существует, то ряд называют расходящимся .

Вернёмся к демонстрационному ряду и распишем его частичные суммы:

Предел частичных сумм – есть в точности бесконечно убывающая геометрическая прогрессия, сумма которой равна: . Похожий предел мы рассматривали на уроке о числовых последовательностях . Собственно, и сама формула – это прямое следствие вышеизложенных теоретических выкладок (см. 2-ой том матана).

Таким образом, прорисовывается общий алгоритм решения нашей задачи : необходимо составить энную частичную сумму ряда и найти предел . Посмотрим, как это осуществляется на практике:

Пример 3

Вычислить сумму ряда

Решение : на первом шаге нужно разложить общий член ряда в сумму дробей. Используем метод неопределённых коэффициентов :

В результате:

Сразу же полезно провести обратное действие, выполнив тем самым проверку:

Получен общий член ряда в исходном виде, следовательно, разложение в сумму дробей проведено успешно.

Теперь составим частичную сумму ряда . Вообще это делается устно, но один раз я максимально подробно распишу, что откуда взялось:

Как записать совершенно понятно, но чему равен предыдущий член ? В общий член ряда ВМЕСТО «эн» подставляем :

Почти все слагаемые частичной суммы благополучно взаимоуничтожаются:


Прямо такие пометки и делаем карандашом в тетради. Чертовски удобно.

Осталось вычислить элементарный предел и узнать сумму ряда:

Ответ :

Аналогичный ряд для самостоятельного решения:

Пример 4

Вычислить сумму ряда

Примерный образец чистового оформления решения в конце урока.

Очевидно, что нахождение суммы ряда – это само по себе доказательство его сходимости (помимо признаков сравнения , Даламбера, Коши и др.), о чём, в частности, намекает формулировка следующего задания:

Пример 5

Найти сумму ряда или установить его расходимость

По внешнему виду общего члена можно сразу сказать, как ведёт себя этот товарищ. Без комплексов. С помощью предельного признака сравнения легко выяснить (причём даже устно), что данный ряд будет сходиться вместе с рядом . Но перед нами редкий случай, когда без особых хлопот рассчитывается ещё и сумма.

Решение : разложим знаменатель дроби в произведение. Для этого нужно решить квадратное уравнение :

Таким образом:

Множители лучше расположить в порядке возрастания: .

Выполним промежуточную проверку:

ОК

Таким образом, общий член ряда:

Таким образом:

Не ленимся:

Что и требовалось проверить.

Запишем частичную сумму «эн» членов ряда, при этом обращаем внимание на тот факт, что «счётчик» ряда «начинает работать» с номера . Как и в предыдущих примерах, надёжнее растянуть кобру на приличную длину:

Однако если мы запишем в одну-две строчки, то всё равно будет довольно трудно сориентироваться в слагаемых (их таки 3 в каждом члене). И здесь нам на помощь придёт… геометрия. Заставим плясать змею под свою дудочку:

Да, прямо так и пишем в тетради один член под другим и прямо так их вычёркиваем. Кстати, собственное изобретение. Как понимаете, не от самого лёгкого задания в этой жизни =)

В результате зачистки получаем:

И, наконец, сумма ряда:

Ответ :

Пример 8

Вычислить сумму ряда

Это пример для самостоятельного решения.

Рассматриваемая задача, конечно, не радует нас разнообразием – на практике встречается либо бесконечно убывающая геометрическая прогрессия, либо ряд с дробно-рациональным общим членом и разложимым многочленом в знаменателе (к слову, далеко не каждый такой многочлен даёт возможность найти сумму ряда). Но, тем не менее, иногда попадаются необычные экземпляры, и по сложившейся доброй традиции я завершаю урок какой-нибудь любопытной задачей.